
Data-Driven Testing using TTCN-3

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: {bstepien | lpeyton}@uottawa.ca

Mohamed Alhaj
Computer Engineering Department

Al-Ahliyya Amman University
Amman, Jordan

Email: m.alhaj@ammanu.edu.jo

Abstract—Complex software systems orchestrate interactions
between components of the system. Integration testing of such
systems involves making individual unit tests for individual
components that work together to test the interactions between
components. Unit tests for different components often consist
of heterogeneous representations of test data and test behavior
written in various implementation languages. As a result, in
integration testing it is an advantage to use a single formal
testing language like TTCN-3 (Testing and Test Control
Notation Version 3). We propose a transformation tool for
Data-Driven Testing to generate TTCN-3 test suites that
include data types, templates and test behavior from tables.
This process is relatively straightforward for relational data
bases and XML (eXtensible Markup Language) because they
are based on well-defined data models. Excel is more complex
because it has no such data models. We have developed a tool
that assists the tester in extracting TTCN-3 typing information
from Excel tables to produce TTCN-3 templates and test
behaviors and optimize their re-usability.

Keywords: Data-driven Testing; Testing; TTCN-3; re-
usability.

I. INTRODUCTION
Complex software systems orchestrate interactions

between components of the system. Integration testing
involves making individual unit tests for individual
components that work together to test the interactions
between components. Unit testing alone does not guarantee
that components interact correctly. Unit tests for different
components often consist of heterogeneous representations
of test data and test behavior written in various
implementation languages. Ideally, integration testing would
use a single formal testing language like TTCN-3 (Testing
and Test Control Notation Version 3).

Data-Driven Testing (DDT) is well known in industry.
There are a variety of industry-oriented definitions online
and the concept is discussed and explained in detail in Web
sites [4][6], user forums [5][11], frameworks [9][12],
patents [13][14], application domains [10] and linked with
other testing models [3][15]. The basic principle consists of
separating test data (inputs and expected outputs) from test
scripts (test behavior) as shown in Figure 1. The test data is
stored as tables in relational databases, XML (eXtensible
Markup Language) documents or Excel spreadsheets. More
advanced test technologies such as TTCN-3 [3] allow a
flexible separation of concerns between an abstract layer

that consists of test data and test logic and a concrete layer
that consists of codecs to encode and decode data into the
specific format and protocol needed to test a component. In
particular, the TTCN-3 concept of template to represent test
data and expected responses is reusable whereas simple
DDT is not, and TTCN-3 strong typing enables early
detection of errors in test data.

Figure 1. DDT separation model

Thus, we propose a transformation tool to generate

TTCN-3 test suites that include data types, templates and
test behavior, from DDT tables. This process is relatively
straightforward for relational data bases and XML because
they are based on well-defined data models. However, the
case of Excel [1] is more complex because such data models
do not exist. We have developed a tool that assists the tester
in extracting TTCN-3 typing information from Excel tables
to produce TTCN-3 templates and test behavior and
optimize their re-usability.

The rest of the paper is structured as follows. In section
II we present an overview of data-driven testing and TTCN-
3. In section III, we present our approach for transforming
data-driven test tables into TTCN-3 test suites. In section
IV, we present our tool implementation and evaluation. And
finally, in section V, we present the conclusion.

II. DATA-DRIVEN TESTING AND TTCN-3
The main goal of DDT is to allow application domain

experts without programming skills to prepare test data and
to reduce maintenance costs. Test data is commonly stored
in tables using one of the following three mechanisms:

 Relational databases
 XML documents
 Excel tables

While the two first approaches provide data models
(table column descriptions for relational databases and XML
schema for XML documents) and are thus unambiguous,
Excel spreadsheets do not. The data models are absent

because tables contain only data with column headings.
Although one can set data types for the cells of a column
mostly to specify the display format for numeric types
(number of decimal digits for numbers), the default data
type is the general data type. Also, there is no explicit
definition of field names. Only column headings hint at
what the fields in a structured data type could be.

Another challenge in DDT is that tests are strictly
sequential as it is impossible to describe alternatives easily
with tables only. Thus, a test step consists of reading a row
of data, performing the test by either sending a message to
the system under test (SUT) or invoking a function with
parameters and checking the response message of the SUT
or the return value of the function against a test oracle
(expected response). It is the responsibility of the
programmer of the test script to determine the exact location
of the various pieces of data in the table to transfer them to
the fields of some structured type variable and distinguish
what is test data from what is a test oracle.

The test scripting language TTCN-3 has been used for
model-driven testing in general, and has many features that
make it an effective tool for DDT. TTCN-3 is based on a
separation of concerns between an abstract layer and a
concrete layer. The basic elements of an abstract layer
consist mainly in the following components:

 Data typing definitions
 Templates definitions
 Behavior definitions

As shown in Figure 2, separate template definitions for
Test Data, and separate test behavior definitions for test
scripts means that TTCN-3 has the same separation model
that DDT has (as shown in Figure1).

Figure 2. TTCN-3 separation model

A TTCN-3 template defines test data (stimuli or test

oracle). Each template has a name that can be referred to in
behavior definitions or reused in further template definitions
like a variable. For test oracles, that variable contains
program code used to verify that a response corresponds to
the test oracle. The concrete layer consists of codecs that
translate abstract into concrete data and vice versa and
communicates with the SUT. We present three examples
next.

Data type definition example for a structured type

The main difference with Excel-based DDT is that in
TTCN-3 we define data types as shown in Figure 3 to be
able to define templates. This is because in TTCN-3, the
matching of test oracles is achieved at once for all test data

as opposed to the DDT approach of using an atomic
assertion mechanism for each individual piece of data .
 type record MyCarRequestType {
 integer nbDoors,
 charstring model,
 charstring brand }

type record MyCarResponseType {
 charstring model,
 charstring brand,
 float listPrice }

Figure 3. TTCN-3 Data Typing Example

XML or Database [16] based DDT is handled via a
built-in mechanism of TTCN-3 tools that translates for
example an XML schema directly into TTCN-3 data types.

Template definition example

A TTCN-3 template as show in Figure 4 resembles a
structured type variable assignment but in essence it is very
different from a typical programming language variable.
The values being assigned to the fields of this structured
data type have two different meanings depending of the
direction of a message in the communication system. When
using the template for sending data, they are plain data that
is either encoded to be sent in the case of messages or
values of parameters for a function being invoked. When
using the template as a test oracle, the values mean that the
response message or return value must match the values
given in the template. The matching mechanism itself is a
built-in feature of TTCN-3 execution tools and thus does
not need to be programmed by the users. Thus, a TTCN-3
template is more like an implicit program.
 template MyCarRequestType
 myTiguanRequest := {
 nbDoors := 5,
 model := “Tiguan”,
 brand := “VW”

}

 template MyCarResponseType
 myTiguanResponse := {
 model := “Tiguan”,
 brand := “VW”,
 listPrice := 35000.00

}
Figure 4. TTCN-3 Template Example

Behavior definition example

Behavior definitions as shown on Figure 5 consist in
sending data to the SUT and trying to match a response or
return value to a test oracle. The TTCN-3 send and receive
commands use template names where data or test oracles are
defined. TTCN-3 receive statements are usually contained
in an alt statement (alternative). This is to handle various
potential responses and assign a corresponding verdict (pass
or fail). The generic receive without parameters means

receive any value and tester typically assign a fail verdict
with such a construct.
 myPort.send(myTiguanRequest);
 timer myTimer = 5.0;
 alt {
 [] myPort.receive(myTiguanResponse)

{ setverdict (pass)}
[] myPort.receive
 {setverdict(fail)}
[] myTimer.timeout
 {setverdict(inconc)}

 }

Figure 5. TTCN-3 Test Behavior Example

TTCN-3 also has timers that can be set and timeouts are
part of an alternative. If any of the receive statements in the
alternative do not match the response, eventually the timer
will time out and a corresponding verdict can be set. Also,
the receive statement is not fully equivalent to an assertion.
When a receive statement fails, TTCN-3 merely tries the
next alternative. This is similar to a rule based system.

Because a template is like a variable, it is fully re-usable
either in different tests but also in the definition of other
templates where a field is of the data type of the re-usable
template. Another interesting aspect of templates is that
since templates are referenced by name, when performing
tests with the same data, it doesn’t need to be redefined or
read for each test like in DDT. More important is the feature
that allows deriving a template from another existing
template by specifying only the delta, thus avoiding
specifying portions of the same data several times.
 template MyType myGolfRequest
 modifies myTiguanRequest := {

 model:= “Golf” }

Figure 6. TTCN-3 template modification Example

Transforming DDT into TTCN-3 has several benefits.
From a language point of view, TTCN-3 is based on strong
typing. Strong typing allows one to restrict the usage of data
by type. In other constructs, such as templates data, being
sent or received can be set to a precise type. In loose table
formats such as Excel, there is no way to specify such
restrictions which inevitably leads to undetectable errors at
design time. Relational databases or XML documents are
typed but not always strongly. For example in relation
databases there is no way to specify exactly which values
are allowed in a specific data type. In our
MyCarRequestType, we could have further refined this type
definition by restricting the brand field type. Instead of
using the generic charstring type, we could have defined a
brandType as follows:

type charstring brandType
(“VW”, “Mercedes”, “Renault”, “Fiat”,
“Ford”, “Chrysler”);

Figure 7. TTCN-3 type Restriction Example

Then this brandType could have been used in the
MyCarRequestType as follows:

type record MyCarRequestType { integer
nbDoors, charstring model, brandType
brand }

Figure 8. TTCN-3 data sub-typing Example

The use of a brand name, other than the one found in the
list of the data type brandType, would cause a compile
error. In DDT, the same error would be detected only at run
time. The following example would trigger a compile error.
 template MyCarRequestType
 myToyotaRequest := {
 nbDoors := 5,
 model := “Corolla”,
 brand := “Toyota”

}

Figure 9. TTCN-3 template with Restricted sub-type Example

The other benefit of TTCN-3 is in its test results display.
Each test event (send or receive) is displayed and TTCN-3
tools allow for inspection of the results by providing a
comparison between the response data received and the test
oracle as shown in Figure 10 where the expected listPrice of
$35000.00 did not match the response value of $15000.00.

Figure 10. TTCN-3 tools results inspection feature

Transforming relational data bases into TTCN-3 have

already been handled by Stepien et al. [7, 8]. They are also
supported by most TTCN-3 tools. However, until now, the
conversion of Excel tables into TTCN-3 has not been
addressed in TTCN-3 or the academic literature.

III. TRANSFORMING TABLES INTO TTCN-3 TEST SUITES
Transforming Excel tables into TTCN-3 test suites

consists of determining data types which include field
names of the implicit structured type that a table represents
and the type of each such field. Also, we need to distinguish
what is data to be sent from data that represents a test oracle.

For example, in the Excel table shown in Figure 11, we can
find two sub-tables, one for stimuli test data and one for
response test oracles. The stimuli sub-table is a simple
structured type while the response test oracle table is a
complex structured type where the observations field is
itself a structured type.

Figure 11. Excel table to be converted example

The problem is how to automate the process of

determining the data types and location where to read data
and then transforming them into TTCN-3. While there have
been cases of Excel tables converted to TTCN-3 in some
industrial projects, there are no publications about the
process because typically each Excel spreadsheet was
handled manually on an ad hoc basis to determine data type
and where to read the appropriate data.

We have approached this conversion problem in two
different ways: first we considered a fully automated
conversion using principles of artificial intelligence where
the system would locate the table of data automatically by
for example discovering that a column contains data of the
same data type, then consider the data found in the rows
preceding the data as headings and any other loose and
isolated row as comments. However, one major problem
with this approach is that there is no indication in Excel
tables as to what a stimulus is and what a response is. This
results in inconsistencies. In a second approach we have
used an interactive mock-up of the Excel table for the tester
to delimit the portions of the table that corresponds to either
column heading, stimuli data and response data. This gives
the tester control over the specification of stimuli and
responses.

Such a tool is more efficient than the traditional
approach of hard coding the locations of data in test logic
and creating the data type definitions manually. Also, this
process is of value when considering economies of scale
with large numbers of Excel tables. It large projects with
extensive use of DDT there could be tens of thousands of
such tables.

This is a fundamental choice based on the principle of
strong typing. Effectively, if we would follow the DDT
model of reading data from tables and applying them to the
test script directly, we would detect errors in tables at run

time only. This inevitably increases the testing cycle where
tests have to be run several times and test results analyzed.
By comparison, the TTCN-3 template approach would
detect a number of errors already at compile time when the
converted templates are compiled.

Also, if the process is fully automated, the user, in this
case the application domain expert, not the programmer, can
correct the errors in the Excel table and the TTCN-3 test
suite can be automatically re-generated and thus re-
compiled without any additional efforts from the
programmer. It has to be noted that the original DDT Excel
table approach is not completely eliminated because it is
still a benefit to have a non-programmer domain expert to
code test data. Actually, with this automated Excel table
conversion process, the coding effort of the programmer is
quasi null. The only task for the TTCN-3 programmer is to
direct the application domain expert to the elements in the
Excel table which have errors.

A. Extracting TTCN-3 Typing from Excel Spreadsheets
TTCN-3 typing can be derived from the tables quasi

automatically. The data can be scanned to determine their
type (alphanumeric, numeric or boolean). Also, the field
names of a structured data type can be derived from the
headings of the columns as for example in the range of
row/column B5 to J6 in Figure 11. Complex data types
containing fields that are themselves of a structured sub-
type can be derived using the indication of Excel spans of a
cell, here in cell H5 for the observation field that covers the
range H6 to J6 for the field names of this sub-type. The
generated data types contain comments that indicate their
origin on the table to improve traceability.

type record StimuliType {
 charstring city, // cell C5
 charstring country // cell D5
}

type record ResponseType{
 charstring city, // cell F5
 charstring country, // cell G5
 ObservationType observations

// cell H5
}

type record ObservationType {
 float temperature, // cell H6
 charstring sky, // cell I6
 integer precipitation // cell J6
}

Figure 12. TTCN-3 Generated Datatypes Example

B. Generating TTCN-3 templates
Each piece of data of a table is assigned the value of a

field of a template. Each row of the table generates separate
templates in addition to separate templates for stimuli and
response test oracles as follows:

template StimuliType ottawa_test_stimuli
:= {

city := “Ottawa”, // cell C7
 country := “Canada” // cell D7
}

template ResponseType
 ottawa_test_response := {

city := "Ottawa", // cell F7
country := "Canada", // cell G7
observations := {

temperature := -20,// cell H7
sky := "cloudy", // cell I7
precipitation := 0 // cell J7

} }

Figure 13. TTCN-3 Generated Templates Example

C. Generating test behavior
Finally, DDT tables can be interpreted as behavior of the

sequential form unless indicated as shown in Figure 14.

testcase weather_service_test()
runs on MTCType system SystemType {
 timer myTimer :=5.0;
 map(mtc:myPort, system:systemPort)
 // row 7
 myPort.send(ottawa_test_stimuli);
 alt {
 [] myPort.receive
 (ottawa_test_response){
 setverdict (pass) }
 [] myPort.receive
 {setverdict(fail)}
 [] myTimer.timeout
 {setverdict(inconc)}
 }
 // row 8
 myPort.send(paris_test_stimuli);
 alt {
 [] myPort.receive
 (paris_test_response){
 setverdict (pass)}
 [] myPort.receive
 {setverdict(fail)}
 [] myTimer.timeout
 {setverdict(inconc)}
 }
 // row 9
 myPort.send(NYC_test_stimuli);
 alt {
 [] myPort.receive
 (NYC_test_response){
 setverdict (pass) }
 [] myPort.receive
 {setverdict(fail)}
 [] myTimer.timeout
 {setverdict(inconc)}
 }
 unmap(mtc:myPort, system:systemPort);
}

Figure 14. TTCN-3 Generated Test Behavior Example

Thus, each row can produce a stimuli being sent and an
alternative of a response test oracle with both any value and
timeout alternatives. Here again for traceability reasons, we
show the row number in the table that corresponds to the
test step. If we generate templates with names found in the
column with the heading test like ottawa_test, the table
shown in Figure 11 would generate the test behavior shown
in Figure 14. The advantage of a TTCN-3 template
approach for conducting DDT is that everything is clearly
defined and thus is easily traceable at run time without
having to go through trace stacks.

IV. TOOL IMPLEMENTATION AND EVALUATION
We have developed and validated these techniques in the

testing of an avionics software system. In particular, we
implemented a tool to automate the transformation of the
tables into a TTCN-3 test suite. As can be seen in Table [15]
and, the tool provides an interactive marking mechanism.
Each portion of the table can be highlighted and a pull down
menu provides categories to choose from in order to indicate
how to use the selected portion of cells to the tool. There are
three categories of markings required to generate a correct
TTCN-3 test suite:

 Delimiting column headings to be used as field
names for structured data types code generation

 Delimiting the two sub-tables of stimuli and
response test oracles for templates code
generation

 Delimiting the test names column if present to
generate template names.

Our marking tool is a mock-up of the Excel spread-sheet
in that it shows the rows and columns with the content of
the cells as placed in the spread sheet. However, these cells
are used for only one purpose, delimiting each zone
according to their functionality in the TTCN-3 code
generation. No other functionality, like calculations
provided by the Excel sheets, can be performed. Also, the
code generation makes use mostly of combinations of such
markings.

Figure 15. Delimiting column headings

For example, the marking of column headings shown in

Figure 15 is not enough for generating data types because
there are two separate groups of data types to be defined,
one for stimuli and one for response test oracles. Thus, one
must separate the table, shown in Figure 16, and select the
portions of the table that belong to either stimuli or

responses. This includes the column headings since both
data types and test data need to be separated into stimuli and
responses.

Figure 16. Delimiting the stimuli sub-table

Manual creation of test scripts in TTCN-3 to execute the

tables before the tool was implemented took on average one
day per test script. With the tool a complete suite of test
scripts was created in one hour. As well, the manual
process was error-prone and inconsistent whereas the
automated scripts were standardized and needed far less
maintenance.

From an implementation point of view, it might have
been ideal to use Excel for the highlighting and subsequent
export to TTCN-3. However, the export would depend on
what commercial tool is available. Thus, we decided on a
model to convert the table into a two dimensional array or
more precisely different parallel arrays, one containing the
data itself and others containing properties such as data
types or formatting instructions such as spans that are
important to detect sub-structured data types.

Finally, our tool produces only the abstract test suite in
TTCN-3. The concrete layer of codecs and communication
software specific to the application domain needs to be in
place. This is built once (based on TTCN-3 abstract data
types) and is reusable by any test suite generated by our
tool. This provides a structured approach with a clean
separation of concerns (abstract tests vs domain-specific
coding/encoding) enabling full re-usability. Traditional
unit-testing, by comparison tends to mix test event checking
with coding/decoding and communication activity in an ad
hoc manner that does not facilitate re-use.

V. CONCLUSION
DDT is an important testing approach for generation and

automation of test campaigns. For such benefits to scale it
is important that such generation and automation be
systematic and strongly-typed. It is also important that the
full complexity of parallel test scripts be supported. TTCN-
3 provides strong features to support such an approach to
TTCN-3 and we have demonstrated how it can be integrated
and applied even when the approach to DDT specifications
is relatively low-tech and ad hoc through the use of Excel
tables. Our approach and tool prototype greatly reduced the
manual effort in generating test campaigns, allowed flexible
support of Excel for non-technical testers while integrating

standardization, strong type and parallel text execution with
TTCN-3.

 ACKNOWLEDGMENT
The authors would like to thank the Spirent company for

providing us the necessary tool TTworkbench to carry out
this research as well as funding from CRIAQ, MITACS and
ISONEO SOLUTIONS for which this research has been
conducted.

REFERENCES
[1] Microsoft Excel, 2018. Accessed March 2018 at

https://support.office.com/en-us/excel
[2] ETSI ES 201 873-1, The Testing and Test Control Notation version 3

Part 1: TTCN-3 Core Language, May 2017. Accessed March 2018 at
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.09.
01_60/es_20187301v040901p.pdf

[3] P. Shinde and A. Sathe, Data-Driven Software Testing for Agile
Development, in PhUSE 2011, Brighton, United Kingdom, June,
2011. Accesed March 2018 at
https://www.lexjansen.com/phuse/2011/ts/TS08.pdf

[4] Microsoft Corporation, How To: Create a Data-Driven Unit Test in
Visual Studio, 2015. Accessed March 2018 at
https://msdn.microsoft.com/en-us/library/ms182527.aspx

[5] StackExchange, What are some good approaches to separating test
data from test scripts, 2013. Accessed March 2018 at
https://sqa.stackexchange.com/questions/6678/what-are-some-good-
approaches-to-separating-test-data-from-test-scripts

[6] Smartbear, Introduction to Data-Driven Testing, 2018. Accessed
March 2018 at https://smartbear.com/learn/automated-
testing/introduction-to-data-driven-testing

[7] I. Schieferdecker and B. Stepien, Automated Testing of XML/SOAP
Based Web Services. In: Irmscher K., Fähnrich KP. (eds)
Kommunikation in Verteilten Systemen (KiVS). Informatik aktuell.
Springer, Berlin, Heidelberg, 2003. https://doi.org/10.1007/978-3-
642-55569-5_4

[8] B. Stepien and L. Peyton, Integration Testing of Web Applications
and Databases Using TTCN-3. In: Babin G., Kropf P., Weiss M. (eds)
E-Technologies: Innovation in an Open World. MCETECH 2009.
Lecture Notes in Business Information Processing, vol 26. Springer,
Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-642-01187-
0_26

[9] Chandrapabha, A. Kumar and S. Saxena, Data Driven Testing
Framework using Selenium WebDriver, in International Journal of
Computer Applications (0975-8887) vol. 118-No. 18, May 2015.
Accessed March 2018 at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.9076&
rep=rep1&type=pdf

[10] E. G. Gomez, M. Casado, M. Stanka and S. Korner, Automated
Regression Testing of Complex Mission Control Applications,
SpaceOps 2010, Huntsville, Alabama, April 2010. Accessed March
2018 at https://arc.aiaa.org/doi/pdf/10.2514/6.2010-2289

[11] D. Cheney, Writing Table Driven Tests in Go, 2013. Accessed
March 2018 at https://dave.cheney.net/2013/06/09/writing-table-
driven-tests-in-go

[12] N. Daley, D. Hoffman and P. Strooper, A framework for table driven
testing of Java classes. Softw: Pract. Exper., 32: 465–493, 2002.
doi:10.1002/spe.452. Accessed March 2018 at
http://onlinelibrary.wiley.com/doi/10.1002/spe.452/full

[13] J. S. Schaefer, Systems and methods for table driven automation
testing of software programs, Capital One Financial Corporation,
2006. U.S. Patent 6,993,748. Accessed March 2018 at
https://patents.google.com/patent/US6993748B2/en

[14] J. J. Haswell, R. J. Young, and K. Schramm, System, method and
article of manufacture for a table-driven automated scripting

architecture, Accenture Llp, 2002. U.S. Patent 6,502,102. Accessed
March 2018 at https://patents.google.com/patent/US6502102B1/en

[15] J. Zander, Z. R. Dai, I. Schieferdecker and G. Din, From U2TP
Models to Executable Tests with TTCN-3 - An Approach to Model
Driven Testing -. In: Khendek F., Dssouli R. (eds) Testing of
Communicating Systems. TestCom 2005. Lecture Notes in Computer

Science, vol 3502. Springer, Berlin, Heidelberg, 2005.
https://doi.org/10.1007/11430230_20

[16] G. Adamis, A. Wu-Hen-Chang, G. Németh, L. Eros and G. Kovacs,
Data Flow Testing in TTCN-3 with a relational Database Schema, in
International SDL Forum, SDL 2013: Model-Driven Dependability
Engineering pp 1-18, Springer Verlag

